轴流风机叶片角度不可调的一级和二级叶轮的安装角度分别为46和30。针对矿井巷道掘进中不同掘进深度所需的风量和压力的差异,避免了过大的风量和压力对浅层掘进深度井下人员正常工作的影响,设计了两级叶片角度可调的叶轮结构。在不同开采深度下,调整两级叶片的角度,使之匹配,既满足了风量和压力的要求,又节省了大量的电力。资源,减少风机结构损失。轴流风机叶片角度可调的叶轮调节机构采用机械传动。每片叶片的下端是叶柄。叶片臂安装在叶柄上。外部动力驱动刀臂通过锥齿轮和平移盘旋转,以调整刀片角度。两级叶轮除了叶片数不相等外,轴流风机规格,参数相同。为了减少后期试验结果的数量,使二级叶轮的旋转方向比一级叶轮加速气流方向承受的负荷更大,本文选取了两级叶轮结构的二级叶轮作为研究对象。根据两个叶轮的结构尺寸,建立了实体模型,因为模态结果应反映叶轮本身的振动特性。建模时,模型的形状和大小应尽可能与实际相符。同时,为了**轴流风机叶片角度调节机构对叶轮整体振动特性的影响,省略了对叶轮结构影响不大的倒棱、螺栓等工艺结构。
近似失速试验,即为了了解轴流风机的实际失速线位置,详细记录风机进出口压力和风量,最后一组风机失速前的稳定风压和风量数据作为风机的失速点参数。通过1b、2a、2b风机的近似失速试验,轴流风机,将三台一次风机的失速工况点数据放到性能曲线上,并拟合到曲线上,如图2所示。从图中可以看出,1b、2a、2b一次风机的实际失速线与理论失速线存在较大偏差。2号炉两台一次风机的失速线偏差略好于1b风机,轴流风机哪家好,但轴流风机与理论失速线偏差较大。根据以往的试验和结果分析,发现一次风机出现急停的主要原因是风机理论失速线向下运动,这不是由于烟气系统阻力过大或烟气系统内部流场分布不均造成的,轴流风机风筒,而是由于风机理论失速线向下运动引起的。风机合理结构。鉴于此,在电厂停堆期间,对现有鼓风机进行了检查。
(1)检查叶片同步后,未发现现有风机转子叶片同步问题,所有叶片均具有良好的调节特性,排除了叶片不同步。
(2)检查每台一次风机的叶**间隙,得出每台一次风机的叶**间隙见表2。2A的轴流风机的**部间隙已在电厂进行了处理。2A一次风机的**部间隙通过在壳体内壁添加玻璃纤维而减小。由于2A的轴流风机失速试验是在**隙处理后进行的,表中2A一次风机顶隙也是处理后**隙的平均值。
轴流风机噪声治理结果
采取噪声治理措施前后,大风量轴流风机进风口处噪声值对比结果如图5 所示。由图5 可知,治理前后进风口处噪声值在各倍频程处有相似的升降趋势。并且,噪声在63Hz 和125Hz 处均有明显峰值。治理后进风口处的噪声值有明显降低。在63Hz 处降噪量约30dB,通过治理前后噪声的A计权测量值对比,治理后轴流风机进风口噪声降噪量为27dB(A)。
山东冠熙风机所采用的轴流风机弯头加折板式消声器的组合消声结构,针对该项目中大风量轴流风机的噪声消声量能够达到27dB(A),并且对低频噪声具有较好的消声效果。弯头加折板式消声器的组合消声结构,不仅能够有效的改变气流流通方向,增加通道长度,提高空气动力性噪声的消声量,而且节约空间,组合形式灵活,具有广泛的应用前景。
轴流风机在同一转速下,由于动叶安装角的变化,因此其工作范围是一组特性曲线。由于风机内部流动是复杂的三维黏性流,完全采用实验方法或三维商业软件求解其全工况下的性能费时费力且成本较高; 同时在风机工况改变,需要调整其转速和动叶角度使其满足风压和效率的要求,因此,快速准确预测出轴流风机在安装角变化时的气动性能够提高缩短设计周期和风机运行效率,具有较为重要的工程应用价值。