排风机优化思路
本模型采用Nelder - Mead 的优化方法,用于非线性方程针对多目标的优化方法,能寻找到全局较小偏差,同时根据自变量的增加而线性增加计算负荷的大小。由于自变量的变化参数较多,为了避免出现非物理的优化结果,提高优化效率。本模型的优化将分为两个部分。
排风机设计点的模型优化
在设计点,风机内部流场状况较好,流动损失小,效率高。因为Koch & Smith 的模型考虑了诸多物理因素并被广泛验证了其合理性,因此不予优化。有3 个参数需要优化: 参考冲角、参考落后角和二次流损失。在一维计算时,由于模型中的经验公式是从大量压气机的实验数据中提取出来的,针对某一特定的风机几何尺寸,排风机,首先需要对采用的损失和落后角模型进行校验和标定。标定是根据风机在转速990r /min 时,排风机的安装角不变情况下的实验气动性能曲线。其次,利用优化得到的损失和落后角模型,对安装角分别为+ 10°、+ 5°、- 10°、- 5°的轴流风机的气动性能进行数值模拟并与实验结果进行对比分析,来验证本模型的准确性和可靠性。因为本风机并未给定相关设计点的参数,排风机模型中只能选取设计转速为990r /min 下高效率点为设计点,选取实验的气动性能曲线做为优化对象。
在采集到排风机的振动信号中,电机的水平振动和径向振动是整个风机严重的振动。在1159.86赫兹时,振动幅度大,与两级叶轮通过频率之和一致。高频频率是由于叶片在旋转过程中周期性地通过空气中固定位置的压力波动引起的,等于叶片的旋转频率乘以叶片数。排风机叶片通过频率的计算公式为f=m.n/60,其中m为动叶片数,n为风机转速,风机两级叶片数为14和10,两级叶片通过频率分别为676.67hz、483.33hz,两个频率之和为1160hz。通过该频率时,叶片的振动加速度为2.0g,说明叶片与风机外壳的动、静干扰对气流波动影响较大。
从轴向不同位置的振动来看,排风机进出口振动小。入口主振频率分别为47.27Hz和96.18Hz,分别为风机的基频和双频。入口流速为层流状态,振动为机械振动。出口处主要振动频率为189.91赫兹、1159.86赫兹、1351.40赫兹和2313.19赫兹,主要为风机基频的四倍和气流脉动引起的高频振动。入口的振动略强于出口的振动。*1级叶轮旋转加速后,排风机内部流场变得更加复杂,而*二级叶轮反向加速时,工业排风机,叶片迎角较大,气动力影响较大,通过*二级叶轮等流量后流场趋于稳定。一级叶轮的振动与电机的振动相似,主要是由复杂流场的气动力和风机基频的四、五倍频率振动引起的。二级叶轮高频宽带振动的振幅远大于风机基频机械振动的振幅。
解决风机振动的策略引起风机振动的主要原因之一是叶片上有大量的灰尘,因此解决这一问题的主要措施之一是及时清除叶片上的灰尘。如果叶片上的灰尘要大规模清除,轴流风机的整个机组将需要长时间的非计划停机,并且在除尘过程中工作量很大,这不仅消耗时间和能源,而且由于工作人员的粗心大意也会造成一些设备损坏。有效的方法是在排风机底盘的舌部位置安装一排喷嘴,并将喷嘴调整到不同的角度,以确保喷嘴排放的灰水能够大面积除尘。这样可以减少轴流风机运行过程中叶片上的积灰,耐高温排风机,避免后续一系列工艺中的一些问题,使轴流风机运行良好。其次,轴流排风机,锅炉引风机产生的粉尘也是造成这一问题的主要原因之一。因此,在解决这一问题的过程中,应重点对排风机进行改造。复合陶瓷可以粘贴在叶轮表面,因为陶瓷表面不需要热输入,陶瓷的耐磨性和耐久性明显是由其它材料造成的。总之,要真正提高电厂轴流风机的利用效率,必须对一些常见的故障进行研究和分析。根据实际情况,我们可以得到一些非常有用的解决方案。只有这样才能提高轴流风机在应用过程中的利用效率,提高电厂的运行效率,产生更大的效益,促进我国的发展。我国电力企业的快速发展。